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The von Neumann-Richtmyer concept of artificial viscosity that is used in calculating 
the propagation of shocks was formulated in one space-dimension. A generalization of the 
method for two and for three space-dimensions is prescntcd here. The basic objectives 
were to find the one-dimensional equivalent of shock compression that avoided geometric 
convergence effects and to determine a characteristic grid length. A description is given 
of a linear viscosity for damping the spurious oscillations that arise when the quadratic 
von Neumann-Richtmyer artificial viscosity is used. The linear viscosity minimizes the 
smearing of the shock front. Unwanted distortions that can occur in multidimensional 
grids are discussed. Results in two and three dimensions are given for the Navier-Stokes- 
type viscosity developed to damp these distortions. 

I. INTRODUCTION 

The concept of artificial viscosity, first introduced in 1950 by von Neumann and 
Richtmyer [I], has permitted the development of numerical methods for solving the 
equations of fluid and solid mechanics in one, two, and three space-dimensions and in 
time. The original formulation of the artificial viscosity (I was proposed for calculating 
the propagation of shocks in an inviscid fluid in one space-dimension. The usual form 
of the von Neumann 4 is 

* This work was performed under the auspices of the U.S. Department of Energy by Lawrence 
Livermore Laboratory under Contract W-7405.Eng-48. 

+ This report was prepared as an account of work sponsored by the United States Government. 
Neither the CJnited States nor the United States Department of Energy, nor any of their employees, 
nor any of their contractors, subcontractors, or their employees, makes any warranty, express or 
implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness 
of any information, apparatus, product or process disclosed, or represents that its use would not 
infringe privately-owned rights. 

1 Notation: The artificial viscosities discussed here apply to the equations of fluid and solid mechan- 
ics formulated in Lagrange coordinates where the grid moves with the material. A convenient nota- 
tion is to use a dot over a parameter to designate a time derivative along the particle path. Thus 
2, j, i will designate the velocity for a particle at position x, y, Z. 
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where q1 = 0 for ak/ax 3 0, x is the coordinate’ in the direction of motion, dx is the 
grid spacing, p is the density, and c0 is a constant -2. 

Equation (I) can be considered a diffusion equation with a diffusion coefficient [2] 
011 : 

011 = c,2p(Llx)2 g . I .I 
The diffusion coefficient is scaled to the grid spacing of the problem. A real viscosity 
coefficient would be independent of the calculational grid; here the function of 4 is 
not to represent real viscosity but, rather, to connect over the minimum distance an 
inviscid state ahead of a shock with that behind the shock. The constant c0 in Eq. (2) 
determines the number of grid spacings over which the shock front will spread. The 
gradient term in Eq. (2) assures that the dissipation occurs in the region of the shock 
layer. The desired result is to spread the shock over the minimum number of grid 
spacings while damping the oscillations behind the front caused by the numerical 
method itself. The von Neumann q of Eq. (l), with a constant c0 of the order of 2, 
will spread a shock front over approximately three to five zones. Attempts to reduce 
the number of zones in the shock front caused overshoots that were slowly damped 
behind the shock front. 

In 1955, Landshoff [3] introduced a q term that was linear in the velocity gradient: 

a.2 
! I -~ q2 = CLP ha ax ’ 

where q2 = 0 for a.?/ax > 0, cL is a constant m 1, and a is the local sound speed. 
The Landshoff q of Eq. (3) gives an initial overshoot larger than the Von Neumann 

q of Eq. (1) but also provides faster damping. The effective diffusion coefficient of the 
linear viscosity q2 is 

012 = c&lxa. (4) 

Dissipation occurs over a larger distance for the linear viscosity q2 than for q1 . For 
shocks propagating in solids, where sound speeds exist even at zero pressure, the 
effect of the linear q2 is to diffuse the shock front over an increasing number of zones 
as the shock propagates. Landshoff recommended a linear combination of the qua- 
dratic and linear q to obtain the best features of both: 

4 = 41 + q2. (5) 

II. SHOCK-WAVE CALCULATIONS IN ONE DIMENSION 

A. Hugoniot Relations 

The artificial viscosity satisfies the Hugoniot relations that connect the state ahead 
of a shock, traveling with a velocity S, with the state behind. Consider a 
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shock process in which the state ahead of a shock, traveling at velocity S, is denoted 
by parameters with subscript 0 and the state behind by parameters with subscript 1: 

s = (Ill - Uo) Pl 

Pl - PO ’ 
(6) 

Pl - PO = PoS(f-4 - Uo), (7) 

Pl + PO El--E,= * (a--+), 

and 

P = PC-5 p), (9) 

where U = particle velocity, P = pressure, and E = specific internal energy. The 
three Hugoniot relations, Eqs. (6) to (8) and the equation of state (9) provide four 
equations with five unknowns. 

Kuropatenko [4-61 used the above equations directly to obtain a viscosity term for a 
numerical solution to the equations of fluid dynamics in one space-dimension and time. 
In the Kuropatenko method for a given calculational zone, the state ahead of the 
shock is given by the zone parameters at time index n and the state behind by para- 
meters at time index n + 1. The change in particle velocity d U is the velocity dif- 
ference across the zone. It is provided by the finite-difference equations of the equa- 
tions of motion in one space-dimension. With dU given, Eqs. (6) through (9) can be 
solved to determine a new pressure. 

The Kuropatenko method can be examined by considering the equation of state of 
a perfect gas, 

P=(y- l)PE. (10) 

The system of Eqs. (6) (7) (8) and (10) can be solved explicitly for the pressure P, 
behind the shock: 

P, = PO + q po(dU)” + p. 1 AU I [iJ+J-)’ (dW2 + L?02]1’2. (11) 

Here, dU is the change in particle velocity across the shock front and u. is the local 
sound speed ahead of the shock and is equal to (yPo/po)1/2. 

Equation (11) was derived by Hugoniot in 1889 [7, 81. P, is the sum of the pressure 
ahead of the shock and of two terms with the form of a linear and quadratic vjscosity. 
As pointed out by Kuropatenko, in the limit of (d U)2 very much larger than uo2, the 
viscosity has the form 

(12) 
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while in the limit (d U)z very much smaller than a, 2 the viscosity has a linear form , 

q=p/AUI. (13) 

We find that the particular combination of linear and quadratic viscosity used in 
Eq. (11) does not seem to be important. The linear and quadratic terms can be 
collected in the same form as the Landshoff ~7 in Eq. (5). Thus, for a perfect gas 
equation of state, an artificial viscosity that gives results similar to the Kuropatenko 
method is 

q++) p@W2 + q~ I Au I, (14) 

where a = (yP/p)‘J2, and q = 0 for AU > 0. 
Figure 1 compares the von Neumann q of Eq. (1) and the q of Eq. (14) for a strong 

shock’in perfect gas, y = 1.4. A constant, IO-kbar boundary pressure was applied at 

50 :- 
Cycle 1141 

0 
0 0.25 

x (cm) 

FIG. 1. Comparison of Eqs. (1) and (14) for calculation of a shock in a perfect gas (y = 1.4, 
p,, = 12 x 10-4g/cm8). Original grid: length 5 cm, 10 zones/cm; fixed boundary at x = 0; right- 
hand boundary, constant pressure P = 10 kbar. 

the right-hand side of the grid. The shock proceeds from right to left and reflects from 
the fixed boundary at x = 0. For a perfect gas, the ratio of the reflected shock pressure 
Pr to the incident shock pressure Pi is Pr/Pi = 3y - l/r - 1 = 8 [7,8]. Figure lb 
shows that an incident shock Pi = 10 kbar is moving to the left, and in Fig. Id the 
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correct reflected shock pressure P, = 80 kbar has been reached with no numerical 
overshoots The calculation was performed with 10 zones/cm. 

Table 1 shows a portion of the computer output at t = I .2 psec but with 30 zones/ 
cm. A constant pressure, P = 1O-2 Mbar, was applied to the outside boundary of 
Lagrange zone J = 151 (not shown in the table). The shock front is located at the 
maximum value of the artificial viscosity 4. In Table I, this maximum is at J = 37, 
corresponding to an Eulerian position halfway between the positions of J = 37 and 
J = 38. The shock front is spread over approximately three zones. 

The Hugoniot equations [7, 81 for a 10-2-Mbar (IO-kbar) shock in a perfect y = 1.4 
gas with initial particle velocity U” = 0, initial pressure P” = 0, initial energy E” = 0, 
and initial density p” = 12 x 10-4g/cc give: 

#‘(A U)Z = dP( 1 - l/7/), (16) 

AU = ( = 2.6352 cm/p set, 

AE = +“(Au)~ = 4. 166610-3 ( 1012 ergs per original volume). (17) 

Table I shows that the finite-difference program yields results that agree to the fifth 
significant figure with the solutions to the Hugoniot equations. 

For an equation of state of the form P = K( l/ V - l), where K is the bulk modulus 
and V the relative volume, Eqs. (6) through (8) can also be solved explicitly for the 
shock pressure P, if the state ahead of shock S is known and the change in particle 
velocity AU is given: 

PI = PO + po?S = P,, + f&W” + po(ALi) [(q)’ + a:]“‘, (18) 

where a, is the local sound speed = (K/P,)~/~ 
As with the perfect gas example, a linear and quadratic viscosity can be identified. 

In the limit of (ALi)2 larger than ~02, the viscosity is 

q = pu(A W”. (19) 

In the limit of (AU)2 smaller than ao2, the viscosity is 

(I poaoA u. (20) 

B. Oscillations behind the Shock Front 

We find that for stress waves in solids, the artificial viscosity coefficients deter- 
mined by the Hugoniot relations and the equation of state do not always provide 
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TABLE I 

Numerical Output at I = 1.2 #ec for the Region near the Shock Fronta 

TIME CYCLE Of0 p-mu 

1.20057084E*00 1846 6.4946043SE-04 1.00000000E-02 

J X U P 0 E ETA 

ooo.91 

%E% 
00078 

z%:6’ 
00075 

i%% 

FE:: 
00070 
00069 

DOD62 
00061 
00060 
00059 
OOOS8 
00057 
00056 
00055 
“005A 
00053 
00052 
00051 
00050 
00049 
00048 
00047 

%Z 
“D”lA 

00037 
00036 
00035 

%iEii 

%E 

/1.5751A2E*oo 
I 1.569586E’oo 
! , ,564031E*oo 

1.5s8475E*oO 
, .552919E’OO 
1.54736X*00 
, .541 BOBE*oO 
1.536252E‘oO 
1.530696E’oO 
1,525141E*oo 
\.519583E+OO 
1.514030E’00 
1.509474E*oO 
1.5o2913E’OO 
l.A97363E+oO 
, .491 eOBE*OO 
1.466252Etoo 
1.480b97E+oO 
1.475141E+oo 
1.469566E’oO 
l.A64031E*oO 
1.458475E+oO 
1.45292DE+DO 
1.447364E’oo 
1.441809E+00 
1.43625AE’Do 
1.430698E+oO 
1.425143E.DO 
1.419588E+Oo 
1.414032E+Do 
1.406477E+Do 
1.4oz922E+oO 
1.397366E+oO 
1.391811E*DO 
1.366256E+OO 
1.380700E+OO 
1.375145E+DO 
1,369590E+OO 
1.364034E+oo 
1.358479E*OO 
1.352924E+OO 
1.347369E*DO 
1.341813E+Dfl 
1,336256E*Do 
1.330703E+OO 
1.325148E*oo 
1.319592E+oo 
1.314037E’oO 
1.30t3482E+oo 
1.302927E’OO 
1.297372E*OO 
1.29161 bE*OO 
1.286261E’oo 
1.26070bE+OO 
1.275151E*oo 
1.269596E+oO 
1.264040E+OO 
1,256485E*Oo 
l.P52930E+OO 
1,247375E+DO 
1.241820E*OO 
1.236264E+oo 
1.230709E+OO 
1.225150E+oo 
1.219562E+OO 
1.213719E+00 
1.206051E*00 
l.l91636E+oO 
l.l6592ZE*OO 
l.l33329E*Oo 
1.100000E*00 
l.O6b667E*oo 
l.O33333E*OO 
,.000000E*00 

-2.6353E+OO 
-2.6353E*OD 
-2,6353E+OO 
-2.6353EeOO 
-2.6353EtOO 
-2.6353EtOO 
-2.6353E’Oo 
-2.6353E+Oo 
-2,6353E+Oo 
-2.6353E’OO 
-2.6353ElOO 
-2,6353E+OO 
-2.6353E’OO 
-2.6353E+OO 
-2,6353E+OO 
-2,6353E*OO 
-2.6353E+OO 
-2,6353E+Oo 
-2,6353E+Oo 
-2.6353E’OO 
-2.6353E’Oo 
-2.6353E.00 
-2,6353E+Oo 
-2.6353E’Oo 
-2.6353E’Do 
-2.6353E+oo 
-2.6353E+oo 
-2.63!,3E*OO 
-2.6353E’OO 
-2,6353E+OO 
-2,6353E*OO 
-2.6353E*OO 
-2.6353E*OO 
-2.6353E’Oo 
-2.6353E’OO 
-2.6353E+OO 
-2,6353E+Oo 
-2,6353E+Oo 
-2,6353E*Oo 
-2.6353E*OO 
-2.6353E+Oo 
-2,6353E*OO 
-2,6353E+Oo 
-2.6353EtOO 
-2.6353E’OO 
-2.6353E’Oo 
-2.6353E’Oo 
-2,635X*00 
-2,6353E*OO 
-2,6353E+OO 
-2,6353E*OO 
-2.6353E’OO 
-2.6353E’OO 
-2.6353E*OO 
-2,6353E*OO 
-2.6353E+OO 
-2.6353E’OO 
-2.6353E’OO 
-2,6353E*OO 
-2.6353E*OO 
-2,6352E*OO 
-2.6353E+OO 
-2,6353E+OO 
-2,6345E*OO 
-2,6270E+OO 
-2,5638E*OO 
-2.1953E+Oo 
-1,2525E+OO 
-2,2379E-01 
-2,5208E-03 
-1,0573E-07 

:: 
0. 

1 . OOOOOE-02 
1.0000OE-02 
1.00001E-02 
1.00OOlE-02 
l .OOOOlE-02 
1 .OOOOlE-02 
l.OOOOlE-02 
l.OOOOlE-02 
,.OOOOlE-02 
l .OOOOlE-02 
l .OOOOlE-02 
1.00001E-02 
l.OOOOlE-02 
l.OOOOlE-02 
l.OOOOlE-02 
l.OOOOlE-02 
l.OOOOlE-02 
l.OOOOlE-02 
1 .OOOOlE-02 
1.00001 E-02 
l.OOOOlE-02 
l.OOOOlE-02 
1.00001E-02 
l.OOOOlE-02 
1 .OOOOlE-02 
1.00001E-02 
l.OOOOlE-02 
l.OOOOlE-02 
l.OOOOlE-02 
1.00001E-02 
1.00001E-02 
1,00001E-02 
1.00001E-02 
l.OOOOlE-02 
l.OOOOlE-02 
1,00001E-02 
1.00001E-02 
1,00001E-02 
1,00001E-02 
1,00001E-02 
1.00001E-02 
1.00001E-02 
l ,OOOOlE-02 
1,00001E-02 
1,00001E-02 
1.00001E-02 
1.00001E-02 
1.00002E-02 
l.O0002E-02 
, .00002E-02 
,.00002E-02 
,.oOOOZE-02 
1.00002E-02 
l.O0002E-02 
l.o0002E-02 
1.00002E-02 
1.00002E-02 
1.00002E-02 
1,00001E-02 
1. OOOOOE-02 
1.00001E-02 
1.00002E-02 
9,99914E-03 
9.99075E-03 
9,91SZlE-03 
s.30963E-03 
6.1743DE-03 
1.74692E-03 
1.27930E-04 
2,59051E-07 
0. 

2 
0. 

0. 
0. 
4,66666E-10 
2.56009E-10 
6.12700E-10 
8.20126E-10 
l.O6905E-09 
1 .25104E-09 
1,33998E-09 
1.3149OE-09 
1.1572wz-OS 
8,45528E-lo 
3.79493E-10 

Ei’60449E-10 
1:72609E-10 
4.66440E-lo 
9,52294E-10 
1.37691E-09 
1.63310E-09 
1.66107E-09 
,.43720E-09 
9,6942bE-10 

~:6e00rE-10 
0. 

2 

:: 

:: 
0. 
0. 
0. 

E: 
5,92514E-10 
8.71760E-10 
7.75447E-10 
4.02185E-10 
0. 
0. 
1.28065E-09 

:: 
1,85173E-‘09 
1.81639E-08 
0. 
0. 
1.81981E-07 
2,34420E-07 
0. 
0. 
7,62955E-06 
7.50939E-05 
6,24800E-04 
3.23187E-03 
5.21667E-03 
2.44207E-03 
7.60112E-05 

::22704E-0Q 

:: 

A. 1670E-03 
4.lG69E-03 
4,1669E-03 
4.1669E-03 
4.16C8E-03 
4.lQcDE-03 
4.1GCBE-03 
4.lbC8E-03 
4.lEC0E-03 
4.1667E-03 
4.1667&Z-03 
4.1667E-03 
4,1667E-03 
4.1667E-03 
4,1667E-03 
4.ltCbE-03 
4,1666E-03 
4*1666E-03 
4. lCGGE-03 
4.16EGE-03 
4. 1666E-03 
4.1666E-03 
4. IECBE-03 
4*1666E-03 
4.1666E-03 
4.1666E-03 
4.1666E-03 
4.1666E-03 
4.1665E-03 
4.1665E-03 
4.1666E-03 
4.1665E-03 
A. 1665E-03 
4.1665E-03 
4,1665E-03 
4,1665E-03 
4.1665E-03 
4.1665E-03 
A. 1665E-03 
4.1665E-03 
4.1665E-03 
4.166SE-03 
A. 1665E-03 
4.1665E-03 
4.1665E-03 
4.1665E-03 
4.1665E-03 
4. 1665E-03 
4,1665E-03 
4.1665E-03 
4,1665E-03 
A. 1665E-03 
A. 1665E-03 
A. 1665E-03 
4.1665E-03 
4.1665E-03 
4,1665E-03 
4.1665E-03 
4.1665E-03 
4.1664E-03 
4.1664E-03 
4.1665E-03 
4,1663E-03 
4.1653E-03 
4.1568E-03 
4,0802E-03 
3.5509E-03 
l.B663E-03 
2.4673E-04 
6.3325E-07 
0. 
0. 
0. 
0. 

8.9996E.00 
5.9996E.00 
5.999X+00 
5.9997E*OO 
5.9998E+Oo 
5.9998E+OO 
5.9999E*Oo 
5. *s99E*oo 
u.s999E*oo 
6.OOOOE*OO 
6.0000E*OO 
6.ooooE+oo 
6.OOOOE*OO 
6.0000E*00 
6.OOOlE*OO 
6.0001E+OO 
6.0001E’00 
6.OOOlE*OO 
6.OOOlE+OO 
6.00olE+00 
6.0001E~00 
6.0002E*OO 
6.0002E+OO 
6.0002E+OO 
6.0002E+OO 
6.0002E+OO 
6.0002E*OO 
6.0002E+OO 
6.0002E*OO 
6,0002C+OO 
6.0002E+00 
6.0002E+OO 
6.0003E*OO 
6,0003E+OO 
6.0003E*00 
6.0003E+OO 
6.0003E+OO 
6.0003E+OO 
6.0003E*OO 
6.0003E*OO 
6.0003E+OO 
6.0003E+OO 
6.0003E+OO 
6.0003E*OO 
6.0003E+OO 
6,0003E+OO 
6,0003E+OO 
6.0003E+OO 
6,0004E+OO 
6.0004E+OO 
6,0004E+OO 
6,0004E*DO 
6.0004E+OO 
6,0004E+OO 
6.0004E+OO 
6,0004E+OO 
6.0004E+OO 
6.0004E+Oo 
6.0004E*OO 
6.0003E*00 
6.0004E+OO 
6.0004E+OO 
6.000oE+00 
5,9964E*OO 
5.9657E*OO 
5.7042E*OO 
4.3470E+OO 
2,3128E*Oo 
1.2962E.00 
l.O227E*OO 
l.o001E*OO 
l.OODOE+OO 
l.oOOOE*OO 
1. oOOOE*OO 

a For problem given in Fig. 1; 4 from Eq. (14); 30 zones/cm; J = Lagrange coordinate; x = 
position (cm); U = particle velocity (cm/psec); P = pressure (Mbar); Q = artificial viscosity 
(Mbar); E = internal energy (lOI erg per original volume); ETA = compression = current density/ 
reference density. 
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sufficient damping of numerical oscillations behind the front. This is especially true 
with problems involving Hooke’s Law. Because most students of numerical methods 
in hydrodynamics are familiar with the Landshoff q, it is convenient to retain this 
form and to use adjustable constants to provide the required damping. However, in 
place of the actual sound speed of the material in the linear portion of q, a term 
proportional to the sound speed for a perfect gas is used for all materials, solid and 
gaseous: 

(21) 

where q = 0 for AU 3 0, c,, = 2, cL = 0.8, AU is the difference in particle velocity 
across the zone, a = (P/p) 112, P is the zone pressure, and p is the zone density. 

This q, with the constants shown, can be used for a wide range of shock pressures 
and equations of state. The advantage of using the parameter a in the linear portion 
of the viscosity is that it provides a zero diffusion coefficient for waves propagating 

Flying Target Flying Target 
plate 

80 t 1 'Y 1 

(d), t =,5.7 LIS 

I (4’ t = 7.6 us ’ ~ 1 t (f)’ t ;ii.*,“* ,I 1 

-2 -1 0 I 2 3 -2 -1 0 1 2 3 

x (cm) 

FIG. 2. Calculated stress waves o,, in an elastic, perfectly plastic material at various times after 
a flying-plate impact (L = loading wave, e.p. = elastic precursor, U = unloading wave). Impact 
velocity: 0.07 cm/Net. Equation of state: pressure P = 0.73(0 - 1) + I .72(~ - I)* + 0.4(7 - 1)3 
Mbar; compression 7 = p/p0 ; density p. = 2.7 g,‘cmS; shear modulus p = 0.248 Mbar; flow stress 
Y, = 0.002976 Mbar; oz. = -P + s,, , where s,, = stress deviator. 
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in solids at rest. This property helps to minimize the undesirable diffusion associated 
with a linear viscosity. With the formulation shown, the linear viscosity becomes 
effective behind the front, where it is needed to damp numerical overshoots. 

For specific problems, the shock front can be sharpened by adjusting the constants 
of Eq. (21). Figure 2 shows the calculated stresses associated with the impact of a 
flying plate against a target plate. The materials are described by an elastic, perfectly 
plastic, constitutive relation. The adjusted constants wete c,, = 1.4 and cL = 0.5, and 
the calculation used 100 zones/cm. The structure in the wave profile after it reaches a 
free surface can be attributed to the fact that the elastic portions of the wave unload 
faster than the plastic ones. The precursor reflects from the free surface and unloads 
the elastic-compression portion of the wave. When the modified wave reaches the free 
surface, the elastic portion becomes tensile, giving a second step to the reflected wave 
profile. 

-Perfect gas ' I - 
(a) 

-Elastic solid- 
0.4 

Radius (cm) 

FIG. 3. Comparison of theory and calculation for a spherically diverging wave in a linear elastic 
solid using Eq. (21) (10 zones/cm; t = 8.7 psec; c, = 2): (a) ct = 0.8 and (b) cL = 10. Equations 
of state (perfect gas): y = 1.4; density p,, = 0.8 g/cm3; initial pressure P = 0.4 kbar; initial radius 
R = 1 cm. Equation of state (elastic solid, Hooke’s law): bulk modulus K = 0.5 Mbar; shear 
modulus P = 0.3 Mbar; density p,, = 2.7 g/cma. Figure shows the radial stress positive in com- 
pression. 

- Calculation 

Radius (cm) 

FIG. 4. Comparison of theory and calculation for a-spherically diverging wave in a linear elastic 
solid using Eq. (21) (30 zones/cm; t = 8.7 psec; CL = 10; c,, = 2): (a) particle velocity and (b) 
stress, shown positive in compression. 
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That centered difference schemes introduce oscillations into a calculation when a 
sudden pressure is applied to a boundary is well known. This problem is particularly 
pronounced for low-level signals propagating in linear-elastic solids (Hooke’s Law). 
Figure 3a shows results of a calculation of a weak spherically diverging wave propa- 
gating in a linear elastic solid. The LJ constants are the same as those given in Eq. (21). 
In this example, only the linear portion of 4 is operative, since (dU)2 < 1 dU 1 . In 
Fig. 3b, the same problem is calculated with a larger linear viscosity term, cL = = 10. 
Smoother results can be obtained with finer zoning. Figure 4 shows results for the 
same problem (cL = 10) calculated with three times as many zones. The theoretical 
results shown in Figs. 3 and 4 were obtained from Ref. [IO]. 

III. SHOCK-WAVE CALCULATIONS IN Two AND THREE DIMENSIONS 

A, Strain Rate 

In extending the one-dimensional von Neumann-Richtmyer idea to two and three 
dimensions, two basic problems must be solved. The first is to obtain an expression 
for the rate of strain given by the velocity gradient in Eq. (1). The second is to obtain a 
characteristic grid length. Most researchers use the continuity equation to replace the 
divergence of the velocity with the rate of change of volume. Actually, this was part of 
the original artificial viscosity formulation of von Neumann and Richtmyer. A shock 
process is assumed to occur when the volume of a zone is compressed in the direction 
of motion; but in two and three space dimensions, the volume of a zone may be 
compressed because of convergence of flow. To describe a shock, we must know the 
rate of change of the volume that is caused by one surface overtaking another surface 
(provided by aajax for flow in one space-dimension). This can be obtained by cal- 
culating the rate of strain in the direction of acceleration. Equation (22) gives the rate 

FIG. 5. Scheme for calculating the rate of strain ds,;dt of a zone defined by points I, 2, 3, and 4: 
1 = line in the direction of acceleration; point c = zone center taken from average of coordinates 
1 to 4: and A, and A, are the x and y components of acceleration obtained by averaging the respective 
components of the four points. 
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of change of an element of length divided by that length in the direction of angle cx for 
two space-dimensions [I I]: 

ds am -=- aj . 
dt ax co9 a + - sm2 01 + 

aY 
(-f$ + $) cos a sin 01. (22) 

The derivation of this expression can be found in Ref. [ 12, Chaps., 1, 21. When angle 01 
is the direction of acceleration, Eq. (22) provides the two-dimensional analog of the 
one-dimensional rate of strain &/8x. If A, and A, are the x and y components of 
acceleration of a zone (see Fig. 5), then 

cos a = Az.(A,2 + Ay2)l/2, 

sin (Y =Ay/(AZ2 + Ay2)1/2. 

The general expression for dsjdt in three space-dimensions [12] is given by 

ds -= 
dt [g (Ad2 + z G&J2 + g- (AJ2 + (g + g, A,A, 

B. Characteristic Grid Length 

The second basic problem is to obtain a characteristic grid length in a multidimen- 
sional grid. Such a quantity is easily obtained for the one-dimensional fluid equations 
of von Neumann and Richtmyer. In two space-dimensions, the square root of the grid 

I x 

FIG. 6. Scheme for obtaining a characteristic grid length L: I = line through zone center c in 
direction of acceleration; di = perpendicular distance from point i (1, 2, 3, 4) to line I; and L = 
2A/(d, + dz + d, + da), where A = area of the zone. 
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area has been used, and in three space-dimensions, the cube root of the volume. None 
of these methods permits the two- or three-dimensional problem to reduce the one- 
dimensional results. A serious objection arises if the zones are distorted or if a zone 
has a large aspect ratio. 

Consider a long, thin zone in two dimensions. The zone area can be large and can 
give a large, effective q coefficient even though the shock is moving in the direction of 
the smallest length. We can overcome this difficulty by defining a grid length L in the 
direction of acceleration. This can be accomplished by dividing the zone area by the 
calculated average thickness of the zone normal to the direction of acceleration (see 
Fig. 6). 

The generalized q is then given as 

(24) 

where 

q-o for 25 >O 
dt ’ ’ 

L 
2A 

= 4 + 4 + 4 + 4 ’ 

ds 
-- = g cos2 CY + 3 sin2 a: + (2 + 2;) 
dt 

cos a sin 01, 

a = (P/py, 

cg E 2, 

and 

Here, A is the area of a grid defined by four nodes and d is the perpendicular distance 
from a grid node to a line through the grid center (see Fig. 6). This q has been used for 
many years in the two-dimensional HEMP program [9] at the Lawrence Livermore 
Laboratory to solve a large number of problems. The characteristic zone length L can 
also be used in the time-step control to satisfy the Courant condition, thus permitting 
a larger time step for motion in the direction of the largest zone length. 

The method can be extended into three space-dimensions, although calculating the 
characteristic grid length L then becomes a cumbersome process. With the q given by 
Eq. (24), a plane shock in one space-dimension can be exactly duplicated with the one-, 
two-, and three-dimensional programs. 

Figure 7 shows a grid for demonstrating in plane geometry the artificial viscosity 
described above. A pressure source in the circular region causes a cylindrically 
divergent shock to propagate through the two-dimensional grid. On any radius, the 
wave profile should be the same. With the grid set up in this fashion, the wave must 
traverse the grid at different angles. In the direction of the x and y axes, the shock wave 
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moves in the direction of the grid. For a radius of 45” from the x or y axis, the shock 
wave moves diagonally through the grid. Figure 8 shows the wave profiles for these 
two extreme conditions. For comparison, a calculation in one space-dimension is 
also shown. The first two profiles closely agree. Some differences are expected because 
of the finite number of zones in the problem. For zones per unit length, the number in 
the 4.5” direction is less by a factor of i1/2 compared to the number in the direction of 
the x axis. 

FIG. 7. Two-dimensional grid in plane geometry used for calculating a cylindrically diverging 
Pressure wave. For material A, a perfect gas: y = 1.4, p,, = 0.8 gjcm3. For material B: P = 0.73 
(7 - 1) + 1.72(~ - 1)2 + 0.4(~ - 1)3, p0 = 2.7 g;‘cm3, and 0 = p/pO. 

4 4 

2 2 0 Two 0 Two dimensions(e dimensions(e = 0' = 0’ 

23 23 -One -One dimension dimension 
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b b 
" ” 

.? 2 .? 2 
8 8 
z z > > 

fl fl 

‘2 ‘2 
2 2 LL LL 

0 0 
1 1 2 2 3 3 4 5 4 5 6 6 7 7 

’ ’ ’ ’ ’ ’ ’ (b)- 
+ Two dimensions(e = 45") - 

-One dimension 

1 2 3 4 5 6 7 

Radius (cm) 

FIG. 8. Comparison of one- and two-dimensional calculations of particle velocity vs radius at 
t = 8 psec. In the two-dimensional calculations, the grid of Fig. 7 was used. Results are shown 
for two different values of 0. 

Figure 9 illustrates a calculation for a strong shock moving into a region of long, 
narrow zones [13], the region itself being shown in Fig. 9a. Figure 9b shows results 
calculated with a characteristic grid length based on the square root of the zone area. 
Large distortions occur in the regions where the aspect ratio of the zones is very large. 
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FIG. 9. Calculation of a strong shock in a perfect gas (y = 3), with long narrow zones in the 
center of the grid: (a) grid at I = 0; (b) grid after shock has passed from left to right (characteristic 
grid length L = square root of zone area); (c) same as (b) but with characteristic grid length L 
given by Eq. (24); (d) same as (c) but with addition of triangle viscosity C,s = 0.05. 

Figure 9c shows the same calculation using the q discussed above. The shock passes 
through this region without causing a large perturbation. In Fig. 9d, a grid stabilizing 
viscosity has been added. 

C. Grid Stabilization 

In addition to the spurious oscillation behind a shock or compression wave in one, 
two, or three dimensions, a linear instability can occur in two and three dimensions. 
In two-dimensional problems, a quadrilateral calculational grid is almost always used, 
because it allows large displacements and deformation to occur without introducing 
the artificial stiffness typical of triangular zones. Experience with triangular grids for 
two-dimensional fIow and tetrahedral grids for three-dimensional flow shows that 
these grids not only introduce an artificial stiffness for compressible-flow problems 
but also introduce asymmetries into the calculation. Results differ depending on the 
direction of orientation of the triangles or tetrahedrons in a given region discretized 
by the grid. However, unwanted “hourglass” distortions can occur with quadri- 
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lateral and cubical grids (see Fig. 9b). For a quadrilateral zone in two space-dimen- 
sions, there are eight degrees of freedom, but not all of these lead to distortion. For 
example, there are two degrees of freedom for translations in the x and y directions 
and one for rigid rotation; with the elastic-plastic formulation, there are three com- 
ponents of stress that can resist distortion. However, there remain two degrees of 
freedom with no restorting forces, and these result in hourglass distortions in the two 
coordinate directions. In three space-dimensions, the problem is more acute, as there 

(a) No triangle viscosity (HEMP) 

t - 100.0 us t = 280.2 us 

(b) Triangle viscosity cNS - 0.001 (HEMP 1) 

t - loo.0 ps t - 280.0 us 

FIG. 10. Comparison of two-dimensional calculations for a vibrating plate (length = 52.5 mm, 
thickness = 10 mm) clamped at the top edge: (a) without and (b) with triangle viscosity. (Displace- 
ments are multiplied by 10). The short lines in the grid show the direction of the maximum principal 
stress. Elastic constants: bulk modulus K = 1.88 Mbar; shear modulus TV = 0.214 Mbar; density 
p. = 7.72 g/cm3. 

0 0.5 1 1.5 0 0.5 1 1.5 0 0.5 1 1.5 

Tim (ms) 

FIG. 11. Effect of triangle viscosity CNs on displacement LJ as a function of time for the center- 
point on bottom edge of plate shown in Fig. 10: (a) CNs = 0; (b) CNs = 0.001; (c) C,s = 0.005. 

are 24 degrees of freedom associated with cubical zones. Three translation directions 
and three rigid rotations do not contribute to distortion and six components of strain 
can give stresses that respond to distortion; this leaves 12 degrees of freedom un- 
accounted for. 
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Most of the two-dimensional Lagrange codes incorporate methods for overcoming 
the hourglass distortion. For example, in the TENSOR code [14] a viscosity is 
developed based on the rotation of one side of a zone relative to the opposite side. 
The method used for the two-dimensional HEMP [9] program is a Navier-Stokes 
tensor artificial viscosity based on triangles (see Appendix A). The three-dimensional 
analog for the HEMP 3D program is a viscosity based on tetrahedrons (see Appendix 
B and Ref. [15]). 

For a given quadrilateral zone in two dimensions there is a tensor articial vis- 
cosity for each of the four nodes that define the zone. Similarly, in three dimensions 
there will be a tensor artificial viscosity for each of the eight nodes making up a given 
cubical zone. With these viscosities included in the acceleration equations, no un- 
accounted distortions to the quadrilateral or cubical grids occur. The artificial vis- 
cosities described in Appendixes A and B also can damp motion of interest. They 

(a) t= 
rap plane 
cl,amped 

1 

z 

z 

lo 
Y 
E .4 
z 

-1 

0 200 400 600 SW II IO 

Tine (16) 

FIG. 12. A HEMP 3D simulation of the motion of a vibrating elastic plate (52.5 x 20 x IO mm): 
(a) position of maximum positive displacement; (b) position of maximum kinetic energy; (c) position 
of maximum negative displacement; (d) displacement history for a point in the geometric center 
ofthe bottom plane. Elasticconstants: bulk modulus K = 1.88 Mbar; shear modulus p = 0.814Mbar; 
density p,, = 7.72 g/cm3. Tetrahedron viscosity: CNs = 0.01. 

should be used obly for problems that show a tendency toward hourglass distortion. 
The magnitude of the viscosities can be limited by the viscosity constant CNS (see 
Appendixes A and B). Static solutions can be obtained with time-dependent calcula- 
tions by using a large value of the viscosity constant C,, to damp kinetic energy. 

Figures 10 and 11 show results in two space-dimensions, and Fig. 12 shows results 
in three space-dimensions. The energy dissipated by the tensor artificial viscosities 

58 l/36/3-2 
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can be evaluated by summing the product of the viscous stresses and the corresponding 
incremental strains. 

Figure 13 shows results for the same spherically diverging one-dimensional cal- 
culation given in Fig. 3, but the two-dimensional HEMP program was used here with 
the grid of Fig. 7 and cylindrical symmetry about the x axis. The 4 constants of Eq. (24) 
were cL = 10 and c0 = 2. In addition, a triangle tensor artificial viscosity with coeffi- 
cient CNS = 0.02 was used. Figure 13 shows the particle velocity profiles along the x 

Radius (cm) 

FIG. 13. Calculation of a spherically diverging wave in an elastic solid. The grid shown in Fig. 7 
was used with cylindrical symmetry about the x axis. Geometry and material were the same as in 
Fig. 3: cL = 10; CNs = 0.02. 

axis (where there are 20 zones/cm) and also along a radius at 45” to the x axis. The 
number of zones cm in the 45” direction is 20/21f2. The agreement with the theoretical 
calculation is about the same as for results from a one-dimensional calculation. As 
mentioned earlier, in finite-difference calculations, the propagation of a weak, spheri- 
cally diverging wave in a linear-elastic solid poses greater difficulties than does wave 
propagation in nonlinear solids. The purpose of the calculation in Fig. 13 is to show 
that results comparable to a one-dimensions1 calculation can be obtained with the two- 
dimensional program, even though the grid was not set up to accommodate the flow. 

IV. CONCLUSIONS 

For calculating the shock waves in two and three dimensions, a generalized method 
is presented that reduces to the one-dimensional method of von Neumann and 
Richtmyer. A linear viscosity that minimizes the diffusion of the shock front is 
incorporated with the von Neumann-Richtmyer viscosity to damp numerical over 
shoots occurring behind the shock front. Tensor artificial viscosities that stabilize 
distortion occurring in two-dimensional quadrilateral and three-dimensional cubical 



ARTIFICIAL VISCOSITY 291 

grids are given. It is desirable to formulate the difference equations with quadrilateral 
and cubical grids, because these grids can undergo large deformations compared to 
triangular or tetrahedral grids. 

APPENDIX A: TENSOR ARTIFICIAL VISCOSITY FOR STABILIZING 
A TWO-DIMENSIONAL GRID 

A Navier-Stokes viscosity is formulated by using triangles to prevent grid distortion 
and is referred to as the “triangle q.” Figure A.1 shows the grid for calculating the 

t 

FIG. A.1. Two-dimensional grid for accelerating point (j, k). 

acceleration of point (j, k). A triangle 4, expressed as a stress deviator, is formulated 
for each of the triangles in the four zones surrounding point (j, k). For example, the 
artificial viscosities for zone 1 are given by 

4 sr = 2~4213~~ - l/34, 

4 yy = 2~r[2/3~ - l/34, 

qxtl - Pl~XY 9 

where 

p1 = Gs(polv‘@‘2; 
A = area of triangle (0, 1, 2,); 

C,, = constant w iOP3; 

pu == zone reference density; 

and 

V = zone relative volume. 

Velocity strains for triangle (0, 1, 2) are: 
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a2 
& = _ = 

3X - f {%l(YrJ - Yl) + 4dYl - Yz) + %!(Y:! - YON, 

29 
Eyy = _ 

3Y 
= + f. h(% - Xl> + 91,(x1 - x2) + Y,,(x, - &JN, 

g + g = - f u+ll(Y, - Yl) + YldYl - YJ + hl(Y2 - YCJ 

- [Sl(XO - x1) + %,(x1 - x2) + %I(& - x,>l~, 

where 

and 

go1 = $(Bo + &), etc., 

A = area of triangle (0, 1, 2) 

= BMYZ - Y,) + X,(Y, - Y,) + J%(Y, - Y,)l. 

A triangle q for zones 0, 0, and @ is formulated in the same manner. The com- 

ponents of the viscosity are added to the corresponding stress in the equations of 

motion for point (j, k). As can be seen, the q has been formulated for plane geometry. 

The same q is used for cylindrical symmetry. 

APPENDIX B: TENSOR ARTIFICIAL VISCOSITY FOR STABILIZING 

A THREE-DIMENSIONAL GRID 

For quasi-static problems in solid mechanics, nonphysical numerical oscillations 
can occur in the grid under certain boundary conditions. A tensor viscosity based on 
the rate of strain of volume elements formed by the zone corners is used to damp this 

type of oscillation. Referring to Fig. B.l, it is seen that surrounding point 0 there are 

eight tetrahedrons defined by the corners of the eight zones. A Navier-Stoke-type 

tensor viscosity based on the rates of strain of the tetrahedron volumes is calculated 

for each tetrahedron that contains point 0. 
The tetrahedron corresponding to zone @ is shown in Fig. B.2, where grid point 1 

corresponds to point 0 of Fig. B. I. For calculating the components of viscosity for 
the tetrahedron in zone 0, the finite-difference-integration-mapping procedure is 

applied to the four surfaces of the tetrahedron formed by vectors A, B, and C, of 
Fig. B.2. 

Volume VABc formed by these vectors is given by 

(~*Bc)~+l = 1/6(B X A) . C = 1/6[bi(~ick - Ul;cj) - bj(a+‘, - akci) 

+ b&z& - ajCi]n 1-l. 
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i,j,k = Lagrange coordinate 

FIG. B.l. Three-dimensional grid for accelerating point (i, j, k). 

FIG. B.2. Grid numbering scheme for calculating the tensor viscosity of the tetrahedron 
with point (i, j, k) of Zone 1. 

The notation for the vector components is 

A: (UJ = x4 - x1 ; (4 = Y4 - Yl ; 

B: (bi) = x2 - Xl ; (h) = ~2 - 1 ; 

c: (4 = x5 - Xl ; (CJ = Y, - 1 ; 

(a/J = z4 - z1 . 

(b,) = z2 - Zl . 

(c,) = z5 - z1 . 
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Velocity derivatives corresponding to the tetrahedron (Fig. B.2) are given by 

($)7Li1’z = (&cj [iAB(A x B) i + .tcA(C x A) . i 

where 

+ &-(B x C) i + f&E x D) i]n+l/z 

and 

nf1/2 = 1 
vABC 2[4BC + Glcl. 

This expression can be simplified by expressing vectors D and E in terms of vectors A 
and B: 

(g)‘;“’ = (&.) [(a$ - *&(A x B) . i f (9, - k.J(C x A) . i 

where 

and 

81 n+1/a 

t-1 2y 

where 

and 

+ (kl - .x$)(B x C) . i]” i-1jz, 

(A x B) . i = (a&, - a,!~~), 

(C x A) i = (cpk - cgzj), 

(B x C) . i = (b,c,, - bl,c,), 

( [(& - k,)(A x B) . j -t’(& - r&)(C x A) . j 

+ (4 - i4)(B x C) j]n+‘/2, 

(A x B) . j = -((a&, - akbi>, 

(C x A) . j = -(ciai, - c&, 

(B x C) . j = -(bg, - bkc,). 

z* nil/z 

C-4 3Z = (p&r) 
[(kl - %&(A x B) . k + (Al - &)(C x A) . k 

$ (21 - .$)(B x C) . klnr’/*, 
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where 

and 

To calculate: 

aj . 
-- 
ax 

and -&, 

i?y ati 
-- and -- 8Y 3Y , 

,> . ‘_. c7y 
-- 8.2 and $- , 

(A x B) . k = (ai& - a&), 

(C x A) . k = (c,aj - c,q), 

(B x C) k = (bici - b,c,). 

do in same way as +z but replace 3i by j or 2; 

do in same way as z but replace Ji by j or %; 

do in the same way as $ but replace i by j or 2. 

Components of the rate of strain of the tetrahedron defined by vectors A, B, and C 
(Fig. B.2) are 

a* 
E,, = ,- ) 

dx 

EZY = [g+g], 

%Z = [g+g], 

E,, = [$+$], 

and 

d ~2c+z+E. 
L’ 

Tensor artificial viscosity for tetrahedron A, B, C (Fig. B.2) is 

qgp = zLL1 [g,, - f ,]n+1’2, 

n+1/2 
9YU = 2tL1 4/Y - 3 ; [ 

] G n+1/2 

I T 
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qy2 = 2/L., [ 
1 fyj n+1/2 

i,, - j ,] ) 

and 

where 

n+112 
9XY = p&.v]n+1’2, 

4 
n+112 
YZ = pl[iyz,n+1’2, 

n+1/2 ~ 
9z5 - PI[czln+1’2, 

Pl = Gs(PO/ o%ln+l, 
C,, = constant =510-2, 

p” = reference density of zone 0, 

and 

V = relative volume of zone 0. 

The above components of the tensor artificial viscosity are added to the corresponding 
six components of the stress tensor defined at time n + 1. Zones 2 to 8 are treated in 
a similar manner; see Fig. B.1. 
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